

Plattformwägezelle Bis 10 kg Typ F4802

WIKA-Datenblatt FO 53.13

Anwendungen

- Präzisionswaagen
- Industriewaagen, Medizintechnik
- Bandwaagen
- Tischwaagen
- Dosieranlagen

Leistungsmerkmale

- Messbereiche 0 ... 0,3 kg bis 0 ... 10 kg [0 ... 0,7 lbs bis 0 ... 22 lbs]
- Wägezelle aus Aluminium
- Hohe Genauigkeit und schnelles Ansprechen
- Unempfindlich gegenüber Seiten- und Ecklast
- Einfache Bauform, leichter Einbau

Plattformwägezelle, Typ F4802

Beschreibung

Die Plattformwägezellen des Typs F4802 sind eine Serie von Aluminium-Einpunktwägezellen, die sich für eine breite Palette von Anwendungen eignen. Durch ihre standardisierte Geometrie und einfache Bauform lassen sie sich leicht in alle Arten von Waagen einbauen.

Die Wägezellen des Typs F4802 werden in verschiedenen Bereichen wie in der Industrie, im Handel, in der Medizin und in der Forschung eingesetzt.

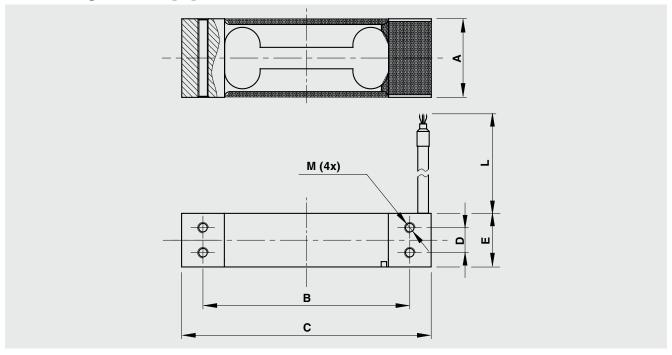
Der häufigste Anwendungsbereich ist in Präzisions-, Industrie-, Band- sowie Tischwaagen, um das Gewicht von Produkten (z. B. Nahrungsmittel, Schüttgüter, Futter, etc.) zu messen. Ebenso werden Wägezellen in der Verpackungsindustrie, in der Fertigung sowie in der Materialprüfung verwendet. Die Plattformwägezellen zeichnen sich durch ihre hohe Genauigkeit und schnelles Ansprechen aus. Weiterhin sind sie unempfindlich gegenüber Seiten- und Ecklasten.

Die Wägezellen sind durch ihre einfache Krafteinleitung problemlos zu handhaben. Diese erfolgt senkrecht zur Geometrie.

WIKA-Datenblatt FO 53.13 · 09/2023

Seite 1 von 3

Technische Daten nach VDI/VDE/DKD 2638

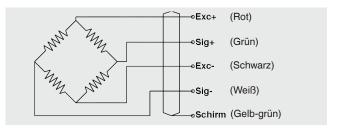

Тур F4802									
Nennlast F _{nom} kg	0,3	0,5	1	1,5	2	3	4	5	10
Nennlast F _{nom} lbs	0,7	1,1	2,2	3,3	4,4	7	9	11	22
Relative Linearitätsabweichung d _{lin} 1)	±0,02 % F _{nom}								
Relatives Kriechen, 30 min.	±0,02 % F _{nom}								
Relative Umkehrspanne v	±0,02 %	F _{nom}							
Relative Abweichung des Nullsignals d _{S, 0}	±2 % F _{no}	m							
Temperatureinfluss auf das Nullsignal TK_0	≤ ±0,02 %	%/10 K							
Temperatureinfluss auf den Kennwert TK _C	≤ ±0,02 %	%/10 K							
Grenzkraft F _L	150 % F _{nom}								
Bruchkraft F _B	200 % F _{nom}								
Werkstoff des Messkörpers	Aluminium								
Nenntemperaturbereich B _{T, nom}	-10 +40 °C [+14 +104 °F]								
Gebrauchstemperaturbereich B _{T, G}	-20 +60 °C [-4 +140 °F]								
Eingangswiderstand R _e	410 ±10 Ω								
Ausgangswiderstand R _a	$350 \pm 5 \Omega$								
Isolationswiderstand R _{is}	\geq 2.000 M Ω /DC 100 V								
Ausgangssignal (Nennkennwert) C _{nom}	2,0 ±0,2 mV/V								
Elektrischer Anschluss	Messkabel Ø 3 x 450 mm [Ø 0,12 x 17,72 in]								
Versorgungsspannung U _{B, nom}	DC 10 V (max. 15 V)								
Schutzart (nach IEC/EN 60529)	IP65								
Plattformgröße	200 x 200 mm [7,87 x 7,87 in]								
Gewicht	0,1 kg [0,22 lbs]								

¹⁾ Relative Linearitätsabweichung ist nach Richtlinie VDI/VDE/DKD 2638 Kapitel 3.2.6 angegeben.

Zulassungen

Logo	Beschreibung	Region
C€	EU-Konformitätserklärung RoHS-Richtlinie	Europäische Union

Abmessungen in mm [in]



Abmessungen in mm							
Α	В	С	D	Е	L	M	
20	58	70	7	15	450	МЗ	

Abmessungen in inch						
Α	В	С	D	Е	L	М
0,79	2,28	2,75	0,27	0,6	17,72	M3

Anschlussbelegung

Elektrischer Anschluss					
Versorgungsspannung+	Exc+	Rot			
Versorgungsspannung-	Exc-	Schwarz			
Signal+	Sig+	Grün			
Signal-	Sig-	Weiß			
Schirm	Schirm	Gelb-grün			

© 2019 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten.

Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik. Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

Bei unterschiedlicher Auslegung des übersetzten und des englischen Datenblatts ist der englische Wortlaut maßgebend.

WIKA-Datenblatt FO 53.13 · 09/2023 Seite 3 von 3

ICS Schneider Messtechnik GmbH

Briesestrasse 59

D-16562 Hohen Neuendorf / OT Bergfelde

Tel.: +49 3303 5040-66 Fax: +49 3303 5040-68 E-Mail: info@ics-schneider.de

WIKA Alexander Wiegand SE & Co. KG Alexander-Wiegand-Straße 30

63911 Klingenberg/Germany Tel. +49 9372 132-0 info@wika.de www.wika.de